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ON THE TRANSVE RSE TWISTING OF SHALLOW

SPHERICAL RING CAPS

by

E. Reisener -

Depar tmen t of Applied Mechanics and Engineering SciencesUNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California 92093

ABSTRACT
The problem. of transverse twisting of a shallow spherical

shell with a small circular hole is solved, in generalization

of the corresponding problem of a flat plate. The solution is

of interest as a closed-form solution of an uneymetrical stress

concentration problem, with quantitative features depending on

its boundary layer behavior for large values of a relevant

parameter. The problem is also of interest as an example of
applicability of a previously proposed asymptotic procedure where
interior contributions and edge-zone contributions are determined

in sequence rather than simultaneously.
-

~~~

kLi

k ~~~~ +
P-I ‘d rI

0) s-’ ‘~~‘ .a ‘r

Cl) .
~~~ 

f~~~ 4~~ .r1~ r
~~
. , ~~~~~.

~ ~I ~t 1;;



On the Transverse Twisting of Shallow Spherical Ring Capst

by

E. Reissner

Department of Applied Mechanics and Engineering Sciences
University of California, San Diego

La Jolla , California 92093

Introduction. The original aim of this note was to formulate

a nonrotationally—syimnetric stress concentration problem for thin

shells which could be solved in closed form , and to obtain the solution

of this problem . It appeared in the course of the analysis that this

stress concentration problem was also a particularly fitting example

for the application of an asymptotic solution method for unsyssnetric

shell problems, involving the concepts of interior and edge zone solu-

tion contributions and of the concept of contracted boundary conditions

for the separate determination of these contributions, which had been

proposed sometime earlier f4J . -

The problem is as follows. We consider an isotropic shallow spherical

shell with the edges defined by two pairs of mutually perpendicular planes

perpendicular to a base plane, with the corners of the rectangle in the

base plane which is determined by the two pairs of mutually perpendicular

planes coinciding with the corners of the shell boundary curve. Given

this configuration , we asstane that the edges of the shell are free of

stress , except for the action of equal and opposite concentrated corner

forces, as indicated in Figure 1. Our object ~is the state of stress in

the shell, without or with a small concentric circular hole at the apex .

It is evident that a limiting case of the above problem is the

corresponding problem of a flat plate, with the solution of the problem

~Supported by the Office of Naval Research.
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without the circular hole being a special case of the problem of

St. Venant torsion of narrow rectangular cross section beams, and with

the solution of the circular-hole problem being included in solutions

by Goodier for a class of transverse plate flexure problems 12J .

In the present analysis the plate flexure problem appears upon

assuming the value of a certain parameter p to be zero. At the same

time the asymptotic analysis corresponding to the procedure described

in f4j is appropriate for values of p which ar e large compared to unity .

In the interim region of finite values of p it is necessary to obtain

appropriate solutions of the equations of shell theory , which in this

instance may be taken from shallow- shell theory.

Regarding the physical aspects of the problem we find , as expected,

a dominance of bending stresses over membrane stresses in the interior

of the shell region. On the other hand , we also find that for suff i-

ciently large values of p we have membrane stresses in an edge zone

which are of the sane order of magnitude as the bending stresses in this

zone, in such a way that the value of the stress concentration factor

for this problem of transverse bending involves both bending and mem-

brane stresses in a sig~ificant manner.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Shells.

We consider a shallow spherical shell with middle surface equation

z — H - r2/2R, where R is the radius of the shell , H the distance of the

apex from the base plane of the shell , and r and e are polar coordinates
in the base plane. We assume that the shell is free of distributed

surface forces and have then that tangentional stress resultants N, stress

couples Pf and transverse stress resultants Q are expressed as follows

in terms of a stress function K and a transverse displacement function

w, 1 31,
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Use of appropriate equations of equilibrium and compatibility in

conjunction with the above, and in conjunction with stress strain relations

of the form trr B(N
~~

_vNoe), etc . leads to differential equations for
K and w of the form

RBv ’v 2 K -  V 2w — 0 , RDV 2 V 2w + V 2K — 0 , (4)

where V2 — ~ ~,rr + r ’( 
~~~ 

+ r 2 (

It is readily verified that the solution of the system (4) may be

expressed in terms of three functions •, • and x in the form f4J,

v — • + ~~~, K • - R D ~’x (5)

provided that

— 0 , V ’* — 0 , V 2 V 2
~ + ~~ — 0 , (6)

where A~ — l/ R 2 BD .

We note for what follows as expressions for resultants and couples

in terms of •, * and x

(~
‘2 x) (V 2

~ ) 
~~RD( 

~ 
,r + r2 ’ ) ‘ 

(7)
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r (V 2)
~~ 00Hee ,rr + RD~ r + r7 ‘ + • (8)

0 e (V2~) (V 2
~)_ e~Hro — ____ - -~~~~ _ - RD ( r 

,rp 
- 

r’~~ ) ‘ -

_D(V’X),r . . (10)

Mrr — 

~
0 rr - DV 2X + (l_v)D( ~~~ + 

X
40) , (11)

H00 — ( l_ v )D rr - vDV2
~ - (l-v)D (X~~ + 

X
ee) , (12)

Mr0 — (l_u)D(~~~. - ~ !) + (l— v)D(~~~ - 

X
re) , (13)

and we also note the designation. of • and • as inextensiona]. bending
and membrane (interior) solution contributions, respectively, and the
designation of x as edge zone solution contribution, with the physical
significance of the latter designation depending on an appropriate relation
between the Length-parameter 1/X and an appropriate linear dimension

of the shell.

The Boundary Value Problem. We start out with the observation that

the classical solution v — -Pxy/2(1-v)D for St. Venane twisting of a
flat rectangular plate as produced by an arrangement of concentrated

corner forces P, in conjunction with an assumption of no inplane stress,
that i~ , in conjunction with the stipulation K — 0, also satisfies the

differential equations (4) for shallow spherical shells. Furthermore,
this solution of (4) aatisfies the same corner force conditions for

a spherical cap with otherwise free edges, in the event that the projec-

tion of these edges onto the base plane of the shell happens to be

rec tangular .

:~~~



Raving the above simple solution for transverse twisting of a

spherical cap, we ask for the way in which this solution is modified

by the presence of a circular hole of radius a, concentric with th~
apex of the shell, given that a is small compared to the overall dimen-

sions of the cap. Evidently , the boundary conditions for the free

edge of this hole are of the from

r — a ;  Nrr — Hr0 — Mrr Qr~~~~~
’Mro ,o — 0 . (14)

As regards the boundary conditions along the outer edges of the

cap, we make the stipulation that for large r we will have a homogeneous

state of stress with cartesian couple and resultant components M,~, — -P 12 ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This is transformed, in

an elementary manner , into four conditions of the form

r - ~~— ; M~1. — ~~P sin 20 0r + r •
~
IM
r 0ø — Nrr — Nre • 0 . (15)

closed-!orm Solution of the Boundary Value Problem. The form of the

boundary conditions (14) and (15), in conjunction with the form of the

differential equations (4) indicates that suitable expressions for w and

K will be product solutions f(r) sin 20. Considering that v and K must

be as in (5) and (6), and deleting at the outset terms not compatible

with the prescribed boundary conditions at infinity, we have then that

w and K will be of the form

w — - ~~~~~~~~~~~~~~~~~~~~~~~ (
~ ~~~~~

. + c 1 + c ,ker 2 Ar + c~kei,~r) , (16)

K — k..~.!jn~j !.~ - c kei ~r + c hker ~r) , (17)
• (1_p)r~flB~ 2 r  9 2 2

with four arbitrary constants C
nl and with the Kelvin functions ker, and
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kei2 subject to the two ordinary second order differential equations

ker~’x + x~~ker x - 4x 2ker2x — -kei2x , (l8a)

kei~x + x~~kei x - 4ic ’kei2x ker 2x . (l8b)

In deriving expressions for stress resultants and couples from (16)

and (17), it will be convenient to introduce the abbreviations

ker 2 — kr , kei2 — ki ; Ar — x , Aa — p . (19)

Therewith, and with (18a ,b), we obtain from equations (1) and (3)

N %Pa sin 2d I 11~~j  
4ki~ (k . 6k

r)J~ , (20)rr (l-v)v’~B 
1— 6c2 ~~~~~

. - 
p

2 

tc 3 ~~~~~~~~~ 

- -~-~.) - c -

% P cos 20 1Nre — ~_6c~ ~~ 
- u 2 

12c,(~~ 
- - 2 ~~ r ’I( , (21)-

H — 
P sin 2~~1 2

rr 2(1-vT 1-P 1C ,k~ - Ci,krJ - (l-v) (_ i  - 6c1 
a~

1 1k ’ 4k ‘ (k~ 4k1~ (22)

Q + ~z i 0  — _ P .in ZO 
- c~k j~ 

-

r r Z(1-v)a

_ _ _ _ _  

k~ kj~I I
- 
P sin 2e

j 
1 - 6c 9 ~~~. + 2u 2 ( c~~( ~~ - + c~ (-

~ 
- (23)

q

Introduction of (20) to (23) into the boundary conditions (14)

then leads to the following set of four simultaneous equations for the

determination of the four constants of integration cn

c (uk~ - 4ki) - c,,(pk - 4kr) — -6c 2 , (24)

-6- 
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- ki) - c ,,(uk - k~) — -3c 2 , (25)

p 2k /p 2k
c 9 ( ~~~ 

+ pk - 4kr) 
- c ,, !~ 

- ~~~ + 4k
1) 

— 6c 1 + 1 (26)

‘i /p 3k’
c, 

~ I-u
1 + 4pk - 4k~J 

- c,,~,1_ - 4vk~ + 4kiJ — 12c 9 - 2 , (27)

where now ki k1(ii), etc .

Upon suitable transformations, this system of equations can be

written in a somewhat simpler form. To begin with, equations (24) and

(25) are readily shown to be equivalent to the sett

-c2 + c,k1 - C
~,
kr — 0 , (24 ’)

2c 2 + c 1~k~ - c ,pk 0 . (25’)

Having (24’) and (25’), we may use (26) and (27) so as to obtain

in place of these two equations the set

-2c9 - c2 + c3pk + ~~~~ — -1 , (26’)

C 9 - p— c2 + c3k + c~k1 — - 
~~
. . (27 ’)

Before evaluating the system (24’) to (27’), it is useful to establish

the analytical form of the quantities which are of principal phys ical
interest. These quantities are the edge values of the couple H90 and

of the resultant N~~. We obtain a particularly convenient form of these

expressions by making use of equations (1) and (2), in conjunction with

• ~ Corresponding to the fact that the conditions Nrr — Nr~ — 0 for r — a
can be shown to be equivalent to conditions K K r — 0 .

-7-



two of the boundary conditions in (14), so as to have

M00(a,0) = -(l+v)DV 2w(a,0) , N09(a,e) — V’K(a,8) (28)

An introduction of (16) and (17) into (28) gives, with the help of (18a ,b),

M90(a,0) — 4 ~~~~~~~~ p 2(c3k1 - C¼kr) sin 20 , (29a)

N00(a,0) — - (c k + c¾kj) sin 20 • (29b)
( l-v) I~B ~

l~aving (29a,b) we see, with the help of (24’) and (27’), the possibility

of the further relations

M00(a. ~
) — - ~ ~~ p’c2 , (30a)

N00(a. ~
) — i’~ (

~ 
+ c1 - ~ ~~ 

c2) , 
(30b)

and it remains only to determine the coefficients c9 and c2 from equa-

tions (24 ’) to (27’) . We do this by first expressing c3 and c~ in terms

of c2 , from (24’) and (25’), in the form

c2 ~j k’ + 2k c2 uk~ + 2kj
C~ — 

I 1tjk~~_k ;1~j 
c~ — 

i k
~
kr

_ k
~
kj 

. (31)

and by then using (26’) and (27’) in order to obtain the relations

i. I (pk’ + 2k )‘ + (uk~ + 2k 1)’c2 — -j~ ~i + (1-v) 
v2p 9 (,4k - ~k ’ki) 

(32a)

C, p’ — 
1(r~

’U
~~ 

+ 2kg) + k1(tik~ + 2k1)+ C l - T 1V UO(jkr - k~~k
1
) 

c, • (32b)

It is possible to simplify the form of (32a ,b) somewhat by makinr

use of certain identities involving Kelvin functions of various orders.

-8-



In this way we obtain t , upon Introducting (32a,b) into (30a b), as

expressions for the significant edge moment dnd the significant edge

resultant , in terms of zeroth order Kelvin functions ,

H (a , i i/4 ) 1 +00 = J. V (33 )-P12 1 + (1-v)f 1

where

(ker’ p ) 2  + (kel ’  L I ) 7  (33b)— 

~j  i~~ 7 ker p - ker ’ p kei p - 2p~~ ~(k~~~~jj5~ + (kei’ u ) ’ l

and

N (a,w/4) f
P/2 — 

1 + (i-v)!1

where

kei’ p kei p + ker’ p ker p
kei’ p ker p - ker ’ p kel p - 2p 1j (ker’ p)~~ + (kei ’ i t ) 7 ) (34b)

Stress concentration factors for bending stresses and membrane

stresses. We define a bending stress concentration factor kb as the

ratio M90 (a,n/4)/M0 where — M09
(oo ,-n/4) -P/2. Therewith

directly given by the right-hand side In (33a).

In order to obtain the corresponding membrane stress concentration

factor km~ 
it is necessary to be more specific about the nature of the

two-dimensionally isotropic shell medium . We shall assume in what

follows that the shell is homogeneous in thickness direction and have

then the relation

Eh’ 1 h’ (35 )• 1)8 
~12 (l-v ’) ET~ 17UI-v ~ ) • a

- ~ See equations (9 .9 . 14)  to (9 .9 . 17)  in 1 1 ) -

-9-



We write further

N (a ,w/4) ~çp~00 0
— 

°o 
= 1

and therewith obtain from (34a)

k — — 41 1 + (]....v)f • (35c)

Stress concentration factors for small and for large values of p.

Given that p = A a = a/’(R~BD — ~I12(1-v ’)a//PiL the limiting case of a

flat plate corresponds to the asstanption p — 0. We find , from equations

(33b) and (34b), that f1 (O) — -1/4 and f,(0) — 0 and therewith from

(33a) and (35c),

(1%) — 4 + 4 v  , (k.~) — 0 , (36a ,b)
j O  p 0

with this result coinciding , as it should, with Goodier ’s result

for plates, without consideration of transverse shear deformation ~2j.

For the case of large u, corresponding to a shell problem with

distinct interior and edge zone solution Contributions use may be made

of appropriate aay ototic formulas. We find , by making use of certain

known cross-product expansion forNu1as~ that

f1 - , f, 1 - + .. . (37a ,b)

and therewith,

~ Equations (9.10.32) to (9.10.34) in fi).

-10-
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(l+’~) + , k ~f l - v 2 
(1 _~~±~_ \ (38a,b)

‘~ ii ,’?! 
in 3 \ p .17!

except for terms of relative order 1/p ’.

Inasmuch as bending and membrane stresses superimpose the relevant

stress concentration factor for the most highly stressed face of the

shell comes out to be , for sufficiently large values of LI ,

k = kb + k . + ~ + ill’ - ____  - v’l~~V~) 
. (39)

It may be noted that the numerical values of k for ii — 0 and for

u are not greatly different, but that while for i-i — 0 the stress

concentration is due entirely to bending, a significant fraction of it

is , for 1 <<  ;t , due to membrane rather than due to bending action .
N~.uuerical values for

’f1, f,. kb and k
~
, as a function of p and

v , may be found in Table I.

Interior solution stresses for large p. The form of the expressions

(16) and (17) for w and k indicates that for large values of LI the

effect of the terms with c, and c, is significant in a narrow edge zone

only and that outside this zone the remaining expression for w is as if

bending occurred without stretching and the remaining expression for K

is as if the state of stress of the shell was a pure membrane state.

We obtain information on the state of stress outside the narrow

edge zone , and in pa r t i cu la r  on the relat ive significance of bending

and membrane stresses, by determining the values of M0~ and in

accordance with (16), (17) and the defining relations (I) and (2), by

set t ing c 1 — c, — 0 in (16) and (17) and by then deriving the relations

M~~~~~’( a . 

~
) - (1 + 6c 1 ) • N~~~(a . 

~
) . (40a,b)

- --a ~. - - - - - i -  - - - —
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We evaluate (40.) by taking c1 from equation (26),- with c 1 and

c as in (31) and (32a). Therewith we obtain, except for terms small

of higher order

(1) (i) Ii~ c, T - ~J~~ 1 (41a)

A corresponding evaluation of (40b) leads to the relations

(i) ______ 
________h o: — _

~~~~, 
- 
u12(i-v’) (4lb)

A comparison of (41a ,b) with (38a,b) shows that the order of

magnitude of the bending stress in the interior is the same as the

order of magnitude of this stress in the edge zone , in such a way that

the dimensionless edge zone value l+v decreases to a value 1 tn the

interior. At the same time the interior membrane stress comes out

to be small of relative order 1/u’ so that, effectively, the interior

state of the shell is a state of inextensional bending.

Direct Asymptotic Solution for Interior and Edge Zone States.

We proceed as in 14) to solve the given boundary value problem, for

values of u which are sufficiently large compared to unity, through

use of equations (5) to (13). Introduction of (7) and (13) into the

two sets of boundary conditions (14) and (15) then leaves as conditions

for the determination of the two harmonic functions • and $ and of the

“plate on an elastic foundation” function x~ 
for r — a,

/ “ 2I,..y x , x 00 -

,rr + ~~ r + r’’ 
— 0 (42)

rO e 1 (V’~) rO (V’~) e____ - -~~~~ — - RD 
~ r ‘ - 

r’ ) 0 • (43)

- - - 

-12- 
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(l
~
V)$ rr + V ’X + (l-v) + 

X
eo) = 0 , (44)

1! 
(
~~~ o 

- 

~ H),0 + i~ (X~re - 

~~ 
+ (V ’X) r — 0 • (65)

with equations (42), (43) and (45) also holding for r — , and with the

right-hand side of (44) being replaced by -(P/2D) sin 20 for r =

We now flote that when 1 << p we have the order of magnitude

relations,

x — o(ax r) X ,r = o(ax rr ) . (46)

etc . We use these for an asymptotic solution of the problem, by retaining

in (44) and (45) the highest and- second highest order of magnitude terms

in X, (V’X) r and V’~~, only, that is, we replace equations (44)

and (45) by the abbreviated equations

+ V’X 0 - + (v’x)
~~ 

— 0 . (47,48)

An introduction of this into (42) and (43) then leaves as two conditions

for the determination of the two harmonic functions • and

- RD - + ,rr ‘

___ - .~~~~~ + RD - i~r)00 
- rr 1 o 

— ~ (50)

tNote that upon writing equations (7) to (13) in the form Nr N~ +
etc ., so as to distinguish between interior and edge zone solution contri-butiona , equations (69) and (50) are equivalent to the previously derived
contracted boundary conditions for the determination of the interior state
[4), of the form r

~
N
~r 

- R(M~~ + P1
~r ~~) — r 2 N~ 0 - R(M~0~~ ~~~~~ 

— 0.,.

-13-



Having determined • and •, we subsequently determine the associated

approximation for the edge zone function x with the help of equations

(48)t , and we use the results obtained in this way in order to obtain

from equations (8) and (12) as approximate expressions for the relevant
L...

edge values of circtmtferential stress resultant and stress couple

N00 
— 

~,rr + RDX~~ H00 = _ (l_ V)D$
,rr VDV’X (51)

for r = a.

In order to carry out the remaining simple calculations we write,

consistent with (16) and (17), in order to assure satisfaction of all

conditions at infinity

i Pa’sin 2oll r’
• = W — - 2(i-v)D ~~~j.y+ c 1 ~~

•j • ( 5 2 ).

• — K~ — Pa’sin 2O (~ !4) (53)
2(l-v)v’l~B~ 

2 r

and we further write

x — e~~~~~~~1”7 (c, cos + C, .in ~!.!) • (54)

and

— ~2e~~
(T
~
a)/I7 k -.

~~~ - c A!. .!~ . (55)
‘
I 

,17

We now introduce - 52) and (53) into the boundary conditions (49)

and (50) and obtain as two equations for the determination of c 1 and c,

c,p’ — (l—v)(l+6c 1 ) — 0 , c,p’ — ( l. - u ) ( l— 6 c
1 ) — 0 . (56)

We note that these equations may be written , equivalent ly, as
DV’x — M

~r 
and D(V’X) r — r~~M~0~~ 0, for r — a .

-14-
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~~~

— —

Equations (56) imply, consistent with (32), that

c2p’ — 1 - v , c1 — 0 . (57)

Having c, and c 1 as in (57), we finally obtain C3 and C,, from

(48) in the form

C, — -P/2DA ’ , C,, = -C, - P/7/DA ’a -C, , (58)

and therewith , from (51),

N00(a, ~~ 
— - 

2/1w 
M00(a, ~

) — -(l+v) . (59)

The above expressions for the edge valuee of N00 and M00 may be compared

with the interior values of these same two quantities , N~ 0 (a , w/4)

6P/2/15!u’ and M~9(a ,s/4) ’-P/2 . which follow from (52),(53) and (57),

consistent with the contents of eouation (61).

Table 1

______  _____  _____  

kb 
______  _____  

km

ji f, f, ‘u=O v-li 3 ~,—1/2 v—0 ~—1/3 v .1/2

0 -0.250 0 1.333 1.600 1.714 0 0 0
.1 -0.249 0.012 1.332 1.599 1.713 0.009 0.008 0.001
.3 -0.243 0.0~ 3 1.321 1.591 1.707 0.048 0.041 0.036
.5 -0.234 0.122 1.305 1.580 1.699 0.092 0.078 0.069
.8 -0.219 0.206 1.280 1.561 1.684 0.152 0.131 0.116
1 -0.208 0.257 1.263 1.548 1.674 0.187 0.162 0.143
2 -0.165 0.443 1.198 1.498 1.635 0.306 0.271 0.241
3 -0.135 0.557 1.56 1.465 1.609 0.372 0.333 0.299
4 -0.114 0.633 1.128 1.443 1.591 0.413 0.373 0.336
5 -0.098 0.687 1.109 1.427 1.518 0.440 0.400 0.362

0 1.000 1.000 1.333 1.500 0.577 0.544 0.500
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